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The conductivity and diffusion of a color-charged two-dimensional thermo- 
statted Lorentz gas in a color field is studied by a variety of methods. In this 
gas, point particles move through a regular triangular array of soft scatterers, 
where, in the presence of a field, a nonequilibrium stationary state is reached by 
coupling to a Gaussian thermostat. The zero-field conductivity and diffusion 
coefficient are computed with equilibrium molecular dynamics dynamics from 
the Green-Kubo formula and the Einstein relation. Their values are consistent 
and approach those obtained by Machta and Zwanzig in the limit of hard 
(disk) scatterers. The field-dependent conductivity is obtained from its 
constitutive relation, from the coupling constant to the thermostat, and by using 
the recently derived conjugate pairing rule of Evans, Cohen, and Morriss, from 
the two maximal Lyapunov exponents of the Lorentz gas in the stationary 
state. All these methods give consistent results. Finally, elements of the 
field-dependent diffusion tensor have been computed. At zero field, they are 
consistent with the zero-field conductivity, but they vanish beyond a critical 
field strength, suggesting a dynamical phase transition at the critical field; the 
conductivity appears to remain finite, approaching a constant value for large 
field strengths. 

KEY WORDS:  Conductivity, diffusion, field-dependence, Lorentz gas, 
Lyapunov exponents. 

1. I N T R O D U C T I O N  

The two-dimensional Lorentz gas we consider was studied before (1'2l and 
consists of a two-dimensional triangular lattice of hard-disk scatterers 
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through which point particles move, which collide with the scatterers. If a 
is the radius of the disks and r the distance between the centers of nearest 
neighbor disks, w =  r - 2 a  is the gap through which the particles must 
move to transfer from one triangular region t o  another. (See Fig. 1). There 
is a limit density of the scatterers above which we study the model: if 
r <<, 4 a / x / 3 ,  then there is no way for the particles to travel freely through the 
gaps without colliding with the scatterers. As will be explained below, we 
replaced the hard-disk scatterers by scatterers which interact with the point 
particles through a continuous potential. 

In the usual Lorentz gas the lattice is infinite and the moving point 
particles are independent. Here we study the motion of a set of particles 
moving under the influence of an external field Fc through the scatterers. 
To enable the formation of a steady state (ss), we thermostat the system of 
moving particles. This thermostat is chosen such that the total kinetic 
energy of the set of moving particles, measured with respect to their 
instantaneous average velocity, i.e., the peculiar kinetic energy K, is a 
constant of the motion. 

In order to simulate a nonequilibrium steady state, we employ the 
equations of motion for the nonequilibrium molecular dynamics (NEMD) 
color conductivity algorithm<a/: 

Pi b i i -  
mi 

Pi = F i + iciF~ - ~(pi - i m i c i J ~ )  

(i) 

Here qi, Pi, and mi are the position, momentum, and mass of the moving 
particle i, respectively. Furthermore, mi = m for all i--- 1,..., N, and F i is the 

Fig. 1. 

a 

r 

G e o m e t r y  of the scat terers  wi th  rad ius  a and  dis tance  r and  appl ied  color  field F c in 
the x direction.  
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Newtonian force on particle i, representing the interaction between this 
particle and the fixed scatterers. In order to study the conductivity of the 
set of moving particles, the particles are "charged" with a color, ce = ( -  1)~ 
(=  + 1 or 1), which couples, like an electric charge, to an external field; 
here the color field Fc = iF~., where i is a unit vector in the x direction and 
Fc = rFcJ is the strength of the field. A difference with the electric case is 
that, in the absence of the external field, the system is color-blind, i.e., all 
particles behave identically, since for F c --0, there is no way of distinguish- 
ing the (color) charge of the particles. Moreover, the color conductivity 
system does not have the complications inherent in the long-range 
Coulombic interactions of the corresponding electrical conductivity 
problem. In our calculations the color field Fc acts homogeneously in the 
x direction (see Fig. 1), so that J~, the instantaneous value of the current 
�9 J = iJ x per particle generated by Fc, is 

1 ~ Pix J~=~ ci--  (2) 
i=1 m 

and the color conductivity is defined from the constitutive relation 

( J x ) s s  
L ( L )  -= - -  (3) 

where ( . .  )ss denotes a steady-state ensemble average. The term involving 
in Eq. (1) represents the thermostatting mechanism, where the coupling 

constant c~ is the Gaussian thermostatting (Lagrange) multiplier, (3) 
which is determined by fixing the peculiar kinetic energy of the N moving 
particles in the system. The peculiar kinetic energy is defined as 

N 

K =  ~ (p~- imcJx)2/2m (4) 
i = 1  

where p~-irnciJx is the peculiar momentum of particle i, since cJx is the 
instantaneous average velocity of all particles with the same charge as 
particle i. From (1), (2), and (4), e can be determined to be 

Z Fi" (Pi - icimJx) 
- ( 5 )  

52 p," (p~- icjnJ~) 

An effect of the thermostat is that it introduces a coupling between the 
otherwise independent particles, since it fixes the total peculiar kinetic 
energy of the particles. In this sense our thermostatted Lorentz gas differs 
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from the usual Lorentz gas, where particles move strictly independently of 
each other, so that the N- and the single-particle problems are identical 
there. 

1.1. Linear Case 

The zero-field color conductivity L(0 + ) is related to the zero-field 
self-diffusion coefficent D(0)=-D of the system by (3) 

lira kB TL(Fc) ---- kB TL(O + ) = lira 
F ~ 0  + Fc- - ,  0 + 

kBT(Jx)ss 
D (6) 

F~ 

Thus the zero-field conductivity can be computed directly by 
extrapolating the measured current-to-field ratio to field zero. On the other 
hand, the diffusion coefficient D can be calculated from equilibrium 
molecular dynamics either by using the Green-Kubo (GK) formula in 
terms of the velocity autocorrelation function (VCF), 

or the Einstein relation (E), 

dt lP~t)'P~(--O) ~ (7) 
rn / eq  

1 
DE = linaoo ~ (Aq~(t)'Aqi(t))~q (8) 

where Aqi( t ) -qi( t ) -qi(O) and ( ' ' ' )eq denotes an equilibrium ensemble 
average. At zero field the diffusion tensor for the Lorentz gas is isotropic, 
characterized by the scalar D only. For nonzero values of the color field, 
the diffusion and the conductivity are both anisotropic tensors. 

1.2. Nonl inear Case 

At nonzero field the conductivity can be determined either directly 
from the measured current-to-field ratio, as stated in Eq. (3), or from a 
recently discovered relation between transport coefficients and Lyapunov 
exponents. (4) 

The 4N Lyapunov exponents {;ti}, i= 1 ..... 4N, measure the exponen- 
tial (long-time) rates of expansion and contraction of 4N lengths associated 
with the 4N-dimensional hypercube which characterizes the system in its 
phase space. The largest Lyapunov exponent characterizes the fastest 
growing length, the second largest is deduced from the fastest growing area, 
etc. 
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There is a simple relation between the sum of all the Lyapunov 
Zi=l  2i and the average energy removed per unit time by the exponents 4N 

thermostat -2K(~)ss .  Since in a steady state the average internal energy 
is constant, 2K(~)ss must equal the average work performed per unit time 
on the system by the external color field, i.e., N(Jx(Fc))ssFc = NL(Fc)F  2. 
Using that K =  N k  B T, this implies that (4) 

L(Fc ) = k B T 4N 
N F  2 ~ 2;(F~) (9) 

c i = l  

where 2i(F~) is the ith field-dependent Lyapunov exponent. Although 
exact, this relation is not very useful. It is exceedingly difficult to calculate 
the full spectrum of all the 4N Lyapunov exponents for systems with more 
than just a few particles. However, for Hamiltonian systems coupled to a 
thermostat an essential simplification is possible. {4) For, if one defines 
conjugate pairs of exponents by grouping the largest and the smallest 
exponents, the second largest with the second smallest, etc., together, the 
sum of each such conjugate pair of exponents, 2~+2i,, is constant, 
independent of i. This was called the conjugate pairing rule. (4) Using this 
rule, one can greatly simplify Eq. (9) and the color conductivity can be 
written as the sum of the two maximal Lyapunov exponents 

2k u T 
L ( r c ) -  a [2ma~(Fc) +)'min(rc)] (10) 

F~ 

The pair of maximum and minimum Lyapunov exponents was chosen, 
since it is the easiest to calculate. (4) In order to obtain the maximal 
Lyapunov exponents from NEMD simulations, we moved the phases of the 
particles of the system forward in time simultaneously on two initially close 
trajectories. The starting point of the second trajectory was created from 
the starting point of the first one by very slightly perturbing the initial 
phase space vector F ( 0 ) - ( q l  ..... qN, PI ..... PN)" We then monitored the 
growth in the separation distance d(t) between these two phase space 
trajectories, d ( t ) - [ F ( t ) - F ( 0 ) t .  At long times, the logarithm of this 
distance is a linear function of time with a slope equal to the largest 
positive Lyapunov exponent 2m~ ~ of the system. The smallest (i.e., the most 
negative) Lyapunov exponent ~min can be calculated by reversing the 
direction of time and calculating the largest Lyapunov exponent of the 
ensuing anti-steady state. (4~ 

Although the conductivity L(0 § ) and the diffusion coefficient 
D--D(0) are directly related in the linear case, this is not so in the 
nonlinear case. Therefore in the latter case we have to discuss the two 
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separately. We first discuss the diffusion (tensor) for the nonequilibrium 
steady state. Away from equilibrium (Fc~O), the Lorentz gas becomes 
anisotropic and the macroscopic convective diffusion equation for the 
probability density P~(r, t) to find particle i at r at t, given it is at r = 0 at 
t = 0, reads 

0Pc(r, t) aP~(r, t) 0 . D .  O 
O------/----+ici(Jx) Or Or ~r Pc(r, t) (11) 

where D = D(Fc) is the field-dependent diffusion tensor. In the linear case, 
D ( 0 ) = D 1 ,  where 1 is the unit tensor. 

As shown on ref. 6, the symmetrized diffusion tensor has a simple 
Einstein relation of the form 

1 
D(Fc) = ,~lim ~ (J~i(t)A~l,( t))~ (12) 

where 

A~i(t ) - Aq,(t) - (z/qi(t) )ss 

= q i ( / )  - -  q i ( 0 )  - -  ic~(Jx)sst (13) 

We remark that A~i(t) is the displacement of particle i in time t relative to 
the average (drift) velocity G(Jx)ss. 

2. MODEL 

Although most versions of the Lorentz gas employ hard interactions 
between the moving particles and the scatterers, ~7) we do not do this. Our 
reasons are twofold. First, there is no explicit analytical solution for the 
motion of a hard particle under the combined influence of an external color 
field and a Gaussian thermostat. Second, the measurement of the 
Lyapunov exponents for systems of hard particles is very difficult. 

For, while between collisions the phase space separation varies 
continuously as a nonexponential function of the time, at the instant of 
collision, jumps occur in the phase space separation of the two neighboring 
phase space trajectories. For these hard-core models this complicates the 
determination of the Lyapunov exponents for two reasons. (1) The com- 
puter dynamics has to switch all the time from continuous (between colli- 
sions) to discontinuous (at collisions) techniques; and (2) the Lyapunov 
exponents have to be determined by long-time averaging over many jumps. 
This is especially cumbersome for the determination of the smallest 
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Lyapunov exponent, since that exponent must be determined before 
inaccuracies in the time-reversed trajectory become comparable with 
typical interparticle spacings or relative velocities and the anti-steady state 
decays to a steady state again. (4) 

We therefore used a continuous potential to describe the interactions 
between particles and scatterers, based on a Weeks-Chandler-Anderson 
(WCA)-like potential, which contains a hard-disk potential as a limit and 
is defined (7) 

r  = oo for R <~ a 

-- + e  for a<R~<a+2 1 /6 r  

= 0  for R>a+21/6~r (14) 

where R is the distance between the center of the scatterer and the pointlike 
moving particle. For  all values of a and e, gt(R) is continuous. In the limit 
of vanishing o- or e, our potential reduces to the hard-disk (HD) interaction 

lim r = lim r = r (15) 
~ 0  e ~ O  

where 

r  = oO for R < a 

= 0  for R > a  (16) 

We note that the modified WCA potential used in Eq.(14) is 
considerably steeper than the original one, so that the determination of the 
Lyapunov exponents is not as accurate, especially at low field strengths. 

We studied a system of 484 moving particles. All results are given in 
dimensionless form using the hard-disk radius a, the mass of the moving 
particle m, and the mean square peculiar velocity of the moving particles, 
v 2= ( (p i - imciJx)2 /2m)ss ,  to define our units of length, __mass, and time, 
respectively. Because of the th__ermostatting of the system, v 2 is constant. 

For  all simulations rnv2/e was set equal to 4 x  10 4. Using that 
rnv2=2kBT, this corresponds to a reduced Lennard-Jones temperature 
T *~ = kB Tie of 2 x 10 4, for which the scatterers behave quite like hard disks. 
Furthermore, we used values of ~/a in the range 1-0.1, and, of course, the 
hard-disk limit is approached for ~/a ~ O. 

The reduced time step (At)(v2)l/2/a varied from 0.003 to 0.00004, 
depending on o-. As one approaches the hard-disk limit, the required 
timestep goes to zero, so that the calculations become more and more 
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lengthy.  In  comput ing  averages,  we used tha t  at  equi l ibr ium the diffusion 
tensor  for the system is i so t ropic  (i.e., D x x = D y y = D ,  D x y = D y x = O  ). 
Errors  can be es t imated  from the differences between the G r e e n - K u b o  
(D~K) and  the Einste in  (DE) diffusion coefficients. 

3. R E S U L T S  

The results of  the equi l ib r ium calcula t ions  are shown in Table  I. The 
last  co lumn of the table  shows the reduced mean  internal  energy per  
par t ic le  e * - e l ( m y 2 ) ;  since e* = 0 . 5  in the ha rd-d i sk  limit, we can use the 
t abu la t ed  values of e* to indicate  how close the system is to the ha rd -d i sk  
limit. We  see tha t  the differences between D~K and  D* are  at  most  
abou t  3 %. 

If  we ex t rapo la te  D to the a = 0  (ha rd -d i sk )  limit,  our  results are 
in good  agreement  with the calcula t ions  of  M a c h t a  and  Zwanzig  ~ for 
hard  disks. In  fact, our  results for w = 0 . 1 a  are D=0 .0985_+0 .005 ;  for 
w = 0 . 2 a ,  D = 0 . 1 6 7 + 0 . 0 1 ;  and  for w = 0 . 3 a ,  D = 0 . 2 4 7 + 0 . 0 0 8 ,  while the 
co r re spond ing  M a c h t a - Z w a n z i g  s imula t ion  value are 0.100 +__ 0.01, 
0.18 + 0.01, and  0.250 _+ 0.01, respectively. 

I t  is interest ing to compare  the V C F s  of the two models  for different 

Table I. Equilibrium Results a 

w* a* D~rc DR e* 

0.3 1.0 0.148 0.147 0.5129 
0.3 0.5 0.199 0.196 0.5056 
0.3 0.4 0.209 0.207 0.5043 
0.3 0.3 0.220 0.217 0.5032 
0.3 0.2 0.226 0.225 0.5021 

0.2 0.7 0.111 0.109 0.5028 
0.2 0.6 0.120 0.119 0.5099 
0.2 0.5 0.132 0.133 0.5081 
0.2 0.4 0.141 0.141 0.5062 
0.2 0.3 0.149 0.146 0.5045 
0.2 0.2 0.148 0.146 0.5028 
0.2 0.1 0.157 0.152 0.5014 

0.1 0.4 0.064 0.066 0.5104 
0.1 0.3 0.076 0.075 0.5073 
0.1 0.2 0.082 0.081 0.5046 
0.1 0.1 0.091 0.090 0.5021 

a w* = w/a, a* = a/a, D ~ K  = DcK/a(v-2) 1/2, D* = DE/a(v-T) 1/2, and e* = e/m~, where DcK is the 
Green-Kubo diffusion coefficient evaluated using Eq.(7) and D E is the Einstein 
diffusion coefficient evaluated using Eq. (8). 
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Fig. 2. The reduced equilibrium velocity autocorrelat ion function VCT* = (v (0 ) .  v(t*))eq/V 2 
as a function of reduced time t* = t(vz)l/2/a for w* = w/a = (a) 0.3, (b) 0.2, (c) 0.1, and various 

values of a* = a/a. 
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T a b l e l l .  Results of  N E M D  S i m u l a t i o n s  for  w * = 0 . 3 ,  c r * = l . f f  ~ 

F* Lff L*th L~ D*jT* D*y/T* e* 

0.0 0.294 0.294 0.5129 
0.25 0.286 0.286 0.216 0.278 0.5130 
0.75 0.279 0,278 0.108 0.280 0.5140 
1.25 0.288 0.288 0.346 0.118 0.098 0.5150 
1.50 0.361 0.360 0.374 0.082 ~ 0  [0.134] 0.5155 
1.75 0.403 0.403 0.400 0.044 ~ 0  [0.110] 0.5165 
2.00 0.439 0.439 0.444 0.034 ~ 0  [0.107] 0.5173 
2.25 0.493 0.493 0.514 0.038 ~ 0  [0.064] 0.5190 
2.50 0.470 0.470 0.478 0.032 ~ 0  [0.053] 0.5210 
2.75 0.435 0.434 0.450 0.5230 
3.125 0.389 0.389 0.380 0.006 ~ 0  [0.037] 0.5248 
3.75 0.361 0.361 0.352 ~ 0  [0.10] ~ 0  [0.029] 0.5293 

L* = Ldm(v~)~/Z/c~a, L*th = Lthm('~)i/2/c~a, L* = LLm(t~2--')l/2/c~a, and D*JT* = 

Djn (~)m/kBTa  are given as a function of F,~'=F,a/mv 7 (c~=x or y and c ~ = l ) .  The 
entries NO for D*jT* denote consistency with a value zero; for these cases we give the 
reduced mean square displacements (see text) in square brackets. 

w and a values (see Fig. 2). For small a values our results are again very 
close to the hard-disk results of Machta and ZwanzigJ 1) 

A difference between the equilibrium and nonequilibrium simulations 
is that for finite values of the color field, not only the diffusion, but also 
the conductivity, is not isotropic. We have made no attempt, though, to 
explore systematically the finite field anistropy of the conductivity of the 
model; our conductivity L is always in the field direction, so that in the 
anisotropic case, L = Lxx, where Lxx is the x x  element of the conductivity 
tensor. 

In Tables II and III we show the results of our finite-field N E M D  

T a b l e l l l .  Tesul ts  of  N E M D  S i m u l a t i o n s  for  w * = 0 . 2 a n d  or *=0 .7  a 

F* L* L* L* D~/T  Dyy/T e* 

0.0 0.217 0.217 0.5028 
0.25 0.205 0.204 O. 164 0.200 0.5120 
0.75 0.193 0.192 0.086 0.214 0.5125 
1.50 0.210 0.208 0.244 0.081 O. 114 0.5135 
2.00 0.266 0.266 0.252 0.054 0.004 0.5150 
2.50 0.371 0.374 0.376 0.006 ~ 0  [0.048] 0.5193 
3.00 0.381 0.381 0.386 n 0  [0.119] ~ 0  [0.032] 0.5213 
3.50 0.364 0.354 0.354 ~ 0  [0.008] N0 [0.026] 0.5245 

a See Table II for notation. 
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calculations. They show, in reduced form, the color conductivity as 
measured by a nonequilibrium average of the color current Ld, by 
the value of the thermostatting multiplier Lth=+2kBT{O~)ss/F 2, and by 
calculating the maximal Lyapunov exponents using the conjugate pairing 
rule, LL, respectively. 

The errors in the Lyapunov exponents were approximately _+4 % but 
at least 0.004, which means that we could not get meaningful results for the 
smallest field values. The accuracy of the Ld values is _+ 3 % at very low 
fields and _+ 1% at higher fields. The agreement between L a and Lth is a 
good check of the correctness of the computer program. The values of L 
obtained by the three different methods are in statistical agreement except 
at the lowest values of the color field, where LL differs from Ld and Lth by 
approximately two standard deviations. The rather large deviations of L* 
from L ~  Lt~ are mainly due to the fact that the WCA potential we used 
is still close to a hard-disk potential and therefore too steep to yield 
accurate values of L*. Our results here are therefore not as good as those 
obtained before for the maximal Lyapunov exponents associated with the 
viscosity of a WCA fluid. (4~ In addition to the conductivity L, we also 
determined numerically the xx and yy  elements of the diffusion tensor 
using Eq. (12). For ease of comparison, columns 5 and 6 use the same units 
as that of the corresponding L values, so that in the zero-color-field limit 

0 . 6  

0 . 5  

0 . 4  

0 . 3  

0 . 2  

0 .1  

0 . 0  

0 . 0  

1 

~'tTi~-+ _ + +,,+( 
\ +, 

++ �9 I 

c~ - D x x / T  

�9 D y y / T  

x L(direct) 
+ L(alpha) 
* L(lyap) 

[ 

k 
L 

F + P 

. . . .  i . . . .  ~ . . . .  = ,  ~-'*, , 7 ,  ,=, ,=  . . . .  , a-. ~. ~. ,= . '  

0 . 5  1 .0  1 .5  2 . 0  2 . 5  3 . 0  3 .5  4 . 0  

F i g .  3. Reduced field-dependent conductivity L* (see Table II) as a function of the reduced 
applied color field strength F*. Five different computational methods are compared: ( 1 )  direct 
N E M D ,  i .e . ,  averaging of the steady-state flux (direct, L * ,  ( 2 )  N E M D  averaging of the 
thermostatting multiplier L*,  (3) using the conjugate pairing rule (L~yap) and (4 ,  5 )  two 
equilibrium methods, which give L(0 +) only: Green-Kubo and Einstein; they are 
indistinguishable on the scale of this graph. The state point is w *  = 0 . 3 ,  or* = 1. We also show 
the reduced elements of the field-dependent diffusion tensor D*~jT* (c~ = x, y) (see Table I I )  

as a function of F~*. At zero field, D*x/T*= D*y/T*/T*= L * ( 0 + ) .  
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we should see that L -D~JT for e = x or y. That this is indeed so can 
be seen in Fig. 3, where the limiting zero-field results computed using the 
Green-Kubo and the Einstein expressions are shown by the arrow. The 
values in Table II are plotted in Fig. 3. 

4. DISCUSSION 

1. We have computed the conductivity and the diffusion tensor for a 
Lorentz gas as a function of the applied (color) field. For  all values of the 
color field the conductivity obtained directly from computer simulations 
agrees, within statistical uncertainties, with the values of the conductivity 
computed using theoretical expressions, in particular the conjugate pairing 
rule of Eq. (10). 

It is interesting to note that while in the zero-field limit 
L*(O+)--D~JT for c~=x or y, at finite values of the color field the 
behavior of the conductivity and the elements of the diffusion tensor are 
completely different. In fact there is then no simple Einstein-like relation 
between the conductivity (tensor) and the diffusion (tensor). While the 
conductivity is a nonmonotonic function of the field strength, which 
exhibits a maximum at F*  ~ 2.25 and appears to approach a constant for 
our largest values of F*  ~ 3.75, Dxx and Dyy appear to approach zero 
before this limit. Thus, while the conductivity remains finite, the diffusion 
tensor goes to zero with increasing field. 

The very quick decrease of the elements of the diffusion tensor to zero 
is perhaps an indication of a field-induced (dynamical) phase transition in 
the diffusive behavior of the system, while the conductivity remains 
continuous, only showing a maximum. Thus, with the peculiar kinetic 
energy remaining constant, the diffusive motion of the particles relative to 
their average (drift) velocity seems to disappear rather quickly at finite 
field values. In fact, not only do the D ~  vanish, i.e., the mean square 
displacements grow slower than t, the mean square displacements 2D~t 
themselves eventually vanish as well. For  that reason, we have indicated 
for those entries in the Tables II and III where the diffusion tensor is 
indistinguishable from zero also the corresponding reduced mean square 
displacements (AO~(t)Agl~(t))ss/a 2 in square brackets. Physically, the 
color-charged particles move with increasing color field with an increasing 
average (drift) velocity through the scatterers in the direction of the field, 
while the mean square displacements (measured relative to this drift 
velocity) decrease, at first, less fast than linear with time, then, after the 
elements of the diffusion tensor have vanished, they drop to zero. Of the 
elements of the diffusion tensor, Dyy perpendicular to the colot field 
vanishes first at a reduced color field value of F *  ~ 1.5, after which Dxx, 
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parallel to the color field, vanishes at a reduced field of F{* ~ 3.2. In a 
Lagrangian coordinate frame moving with the particles, the motion of 
the particles becomes therefore, with increasing color field strength, 
increasingly constrained to the direction of the color field. 

2. The disappearance of diffusion in the Lorentz model at high fields 
is interesting since it might serve as a model for electrophoresis, where 
chemical mixtures in a gel, for instance, are separated under the combined 
influence of an electric field and diffusion. Here the diffusion counteracts 
the separation of the species in the mixture, which occurs as a result of the 
different conductivities (mobilities) of the species. Our Lorentz model, in 
which the gel is replaced by fixed scatterers, suggests that the diffusion 
could perhaps be reduced significantly at high fields, leading then in 
principle to improved separation rates of the mixture species. 

3. In Fig. 4 we have sketched the mean square displacements of the 
y - q y  component of a particle i relative to the drift velocity [cf. Eq. (13)] 
as a function of time for a number of field strengths Ft. They are 
remarkably like those of a solid. For, while the short-time linear rise is 
common to liquids and solids, the longer-time behaviors of liquids and 
solids differ: for liquids this linear behavior continues, while for solids it 
changes to damped oscilations around the time-averaged mean square 
displacements about a lattice site. The same happens in our Lorentz model. 
It seems to imply that while in the solid it is the atoms that vibrate 
around their fixed lattice sites, here it is the point particles that carry out 
a vibrating motion with respect to the disks, when viewed from a comoving 
Lagrangian cooordinate system. 

(Ay i(t)Ay i(t)) 

0.200 / ' ' : -J 

0.160 ~ / X ~ Fc* 

0,120 / \i. ~ . / / " ~ ~  I 

o.o8o /"  . . -  
I [ / ' \  / 

0.040 / ~..' " . -" 

0 000 / ume } 
0.000 5.000 10.000 15.000 

Fig. 4. Averages of the mean square displacement in the y direction relative to the drift 
velocity as a function of t* for three values of the reduced color field F~* for which Dyy is zero. 
The state point is w* = 0.3, ~* = 1. 
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4. We emphasize that  a l though we carried out a number  of investiga- 

t ions in the nonl inear  regime as a funct ion of increasing field strength, 

the behavior  in this regime turned out  to be so complicated that  only a 
beginning  of a study of the nonl inear  regime can be considered to have 

been made. 
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